Sisekaitseakadeemia
Päästekolledž

Ksenia Vihrina

KEEMIAPÄÄSTETEENUSE VAJADUS EESTIS
Lõputöö

Juhendaja:
Andres Talvari, professor
Kaasjuhendaja:
Ivar Frantsuzov

Tallinn 2011
Kolledž: Päästekolledž Kuu ja aasta: Juuni 2011

Töö pealkiri: Keemiapäästeteenuse vajadus Eestis

Töö autor: Ksenia Vihrina Olen nõus oma lõputöö kättesaadavaks
tegemisega elektroonilises keskkonnas.

Allkiri:

Antud lõputöö on kirjutatud teemal "Keemiapäästeteenuse vajadus Eestis". Lõputöö
põhiosa pikkuseks on 42 lehekülge. Lõputöö sisaldab 7 tabelit ja 9 joonist. Töö on
kirjutatud eesti keeles ja võõrkeelne kokkuvõte vene keeles.

Probleem on seotud mitme aspektiga: Eestis on reaalne keemiaõnnetuse oht: on olemas
ohtlikud ja suurõnnetuse ohuga ettevõtted, toimub ohtlike ainete transiit. Teadaolevalt
on Eestis ka juhtunud keemiaõnnetusi. Maailma statistika näitab, et kõige karmimate
tagajärgedega on need õnnetused, mis puudutavad ohtlike aineid.

Käsosleva lõputöö eesmärgiks on analüüsida keemiapääste võimekust ning leida selle
teenuse optimaalne vajadust Eestis. Leida mõõdetavad argumendid, mis kinnitavad
technika vajadust, arvestades erinevaid keemiapäästeteenuse tasemeid. Samuti uuenda
välja nõrgad küljed selle teenuse teostamisel ja anda ettepanekud nende
kõrvaldamiseks.

Lõputöö koosneb kolmest peatükist. Esimeses peatükis annab autor ülevaate
demikaaliohutusest Eestis. Teises peatükis annab töö uurimisiteitideid lõputöö eemärkide saavutamiseks. Kolmandas peatükis
annab autor hinnangu keemiapäästteenusele ja pakub omapoolsed ettepanekud selle
teenuse arendamiseks.

Võtmesõnad: ohtlikud ained, keemiaõnnetus, risk, keemiapäästte võimekus

Ключевые слова: опасные вещества, химическое прошлое, спасатели

Säilitamise koht:

Kaitsmisele lubatud

Kolledži direktor: Allkiri:

Vastab lõputöö nõuetele

Juhendaja: Allkiri:
SISUKORD

LÕPUTÕÖ ANNOTATSIOON .. 2
SISUKORD .. 3
MÕISTETE JA LÕHENDITE LOETELU ... 5
SISSEJUHATUS .. 6

1. KEMIKAALIOHUTUS EESTIS ... 7
 1.1 Ohtlikud ained .. 8
 1.2 Suurõnnetuse ohuga ettevõtete seotud riskid .. 9
 1.2.1 Põhja-Eesti Päästekeskuse teeninduspiirkond ... 11
 1.2.2 Ida-Eesti Päästekeskuse teeninduspiirkond ... 12
 1.2.3 Lõuna-Eesti Päästekeskuse teeninduspiirkond .. 13
 1.2.4 Lääne-Eesti Päästekeskuse teeninduspiirkond .. 13
 1.3 Ohtlike ainete transport .. 14
 1.3.1 Ohtlike ainete vedu maanteetranspordis .. 15
 1.3.2 Ohtlike ainete vedu raudteel .. 16
 1.3.3 Ohtlike ainete vedu veetranspordis ... 17

2. TÖÖ UURIMUSLIK OSA ... 19
 2.1 Uuringu metodoloogia .. 19
 2.2 Intervjuude tulemuste kokkuvõte .. 19
 2.2.1 Päästeameti erikeemia talituse juhataja Jaanus Vahersalu 20
 2.2.2 Päästeameti päästetööde koolituse juht Stella Polikarpus 20
 2.2.3 Päästeameti planeerimise- ja analüüsi talituse peaspetsialist Kady Danilas 20
 2.2.4 Põhja-Eesti päästekeskuse planeerimisbüroo juhataja Martti Parve 21
 2.2.5 Ida-Eesti päästekeskuse Sillamäe komandopealik Sergei Petrov 21
 2.2.6 Ida-Eesti päästekeskuse koolitusbüroo juhataja Urmas Grüning 21
 2.2.7 Lõuna-Eesti päästekeskuse Valga komandopealik Raivo Pavlovitš 22
 2.2.8 Lääne-Eesti päästekeskuse koolitusbüroo juhataja Vaino Kaunissaar 22
 2.3 Keemiaönetustute statistika .. 23
 2.4 Eesti keemiapäaste võimekuse analüüs ... 27
 2.4.1 Eesti Päästesüsteem .. 27
 2.4.2 Keemiapästäteenuse kirjeldus .. 28
 2.4.3 Teenuse osutamiseks vajalikud ressursid .. 29
 2.4.4 Keemiapäaste teenusstandardi tööalased täienduskoolitusid 30
2.4.5 Keemiavõimekusega komandod Eestis ..30
3. TULEMUSTE ANALÜÜS JA ETTEPANEKUD ..33
 3.1 Järeldused ..33
 3.2 Ettepanekud ...34
KOKKUVÕTE ..36
PE3IOME ..37
VIIDATUD ALLIKATE LOETELU ..38
TABELITE JA JOONISTE LOETELU ..40
LISA 1. Enamlevinumad ohtlikud kemikaalid eestis ...41
LISA 2. Ohtlike ainete klassid ..43
LISA 3. PEKP teeninduspiirkonna suureõnnetuse ohuga ettevõtted45
LISA 4. IEPK teeninduspiirkonna suureõnnetuse ohuga ettevõtted47
LISA 5. LõEPK ja LäEPK päästekeskuste teeninduspiirkonna suureõnnetuse ohuga ettevõtted48
LISA 6. Õnnetuste statistika ..49
LISA 7. Eesti territooriumil juhtunud keemiaõnnetused ...50
LISA 8. Keemiaõnnetused, mis olid juhtunud välismaal ..51
LISA 9. Intervjuu küsimused ..52
MÕISTETE JA LÜHENDITE LOETELU

Kemikaal - on aine või valmistis, mis on kas looduslik või saadud tootmismenetluse teel.
Valmistis - on vähemalt kahe aine segu.
Aine - on looduslikus olekus või tootmismenetluse teel saadud keemiline element või keemiline ühend koos püsivuse säilitamiseks vajalike ja tootmismenetlusest johtuvate lisanditega.
ÜRO number (UN number) on neljast numbrist koosnev ÜRO poolt väljatöötatud ohtliku aine või eseme tunnusnumber.
Kõrgendatud riskikeskkond - kui sukeldumisega kaasnevad raskendavad faktorid ja kus moodustatakse keemiasukeldujate ohutuse tagamiseks julgestus lüli, vajadusel loputus- või pesukoht.
Julgestuslüli – (JL) keemiasukeldumisülesannet täitvate keemiasukeldujate ohutust tagav keemiasukeldujate lüli, kes on koheselt valmis välja vahetama keemiasukeldumisülesannet täitvaid keemiasukeldujaid või abistama neid ohuolukorras
Reservlüli – (RL) reservis olev keemiasukeldujate lüli, mille eesmärk on tagada katkematu keemiasukeldumine.
Keemiasukeldujate juht (KSJ) on päästetöötaja, kes juhib keemiasukeldujate lüli või lülide tööd keemiasukeldumise teostamisel.
Keemiapäästemeeskond – on keemiavõimekusega päästekomando meeskond, millel on erivarustus ja väljaõpe.
LäEPK - Lääne-Eesti Päästekeskus.
LõEPK – Lõuna-Eesti Päästekeskus.
PEPK – Põhja-Eesti Päästekeskus
IEPK – Ida-Eesti Päästekeskus
SISSEJUHATUS

Päästteenistus on pikki aastaid arendanud keemiapääste võimekust ning on valmis koheselt reageerima keemiaõnnetustele. Päästteenistus peab lisaks paljudele muudele önnetustele olema valmis reageerima ka ohtlike kemikaalidega seotud önnetustele. Keemiaõnnetusi esineb harva, kuid nende tagajärjed vörreldes tulekahjudega võivad olla märksa rängemad.

Eelnevast lähtudes on lõputöö põhiprobleemiks, sest Eestis on reaalne keemiaõnnetuse oht: on olemas ohtlikud ja suurõnnetuse ohuga ettevõtted, toimub ohtlike ainete transiit. Teadaolevalt on Eestis ka juhtunud keemiaõnnetusi. Maailma statistika näitab, et kõige karmimate tagajärgedega on need önnetused, mis puudutavad ohtlikke aineid.

Käesoleva lõputöö eesmärgiks on analüüsida keemiapääste võimekust ning leida selle teenuse optimaalne vajadust Eestis.

Selle jaoks on plaanis leida mõõdetavad argumendid, mis kinnitavad tehnika vajadust, arvestades erinevaid keemiapäästeteenuse tasemeid. Samuti uurida välja nõrgad küljed selle teenuse teostamisel ja anda ettepanekud nende kõrvaldamiseks.

Selleks, et jõuda püstitatud eesmärgini, on autor esitanud järgmised uurimisküsimused:
- Millised kemikaaliohud on Eestis ja mis ohte tekitavad ohtlikud ained?
- Millised on Eestis toimunud keemiaõnnetused ja milline on nende statistika regiooniti?
- Kas keemiapäästeteenuse Eestis on piisav ja millised võimalused, et selle teenuse arendamisel?

Uurimismeetoditest kasutatakse antud lõputöös järgmisi: statistiliste andmete ja dokumendianalüüsi ning intervjuud.

1 KEMIKAALIOHUTUS EESTIS

Praeguseks ajaks on kemikaalid püsivalt tunginud inimtegevusse ja avaldavad soodsat mõju meditsiinis, pöllumajanduses, tööstuses ja olmes. Ometi võivad paljud, eriti uued tunnmatute omadusega kemikaalid, ebaõige kasutamise korral ohustada inimeste tervist ja mürigitada keskkonda (Tint 1999:58).

CAS Registris on kirjas 59 miljonit keemilist ühendit, Euroopas on registreeritud 2 miljonit kommerts kemikaali, igal aastal tuleb turule 500 - 1000 uut keemilist ainet. Iga kemikaal võib muutuda elusorganismide toksiliseks (CAS 2011).

Sagedamini kasutatakse umbes 100 000 keemilist ainet, mis esinevad puhtalt või segudena. Harilikult on need kemikaalid tööstusprodukttide koostisosad. Tööstusmaades tuntakse kuni kaht miljonit sellist mitmesuguse kaubandusliku nimetusega saadust (Mahoney 1992:180).

Sattudes õhku, maale või veekogudesse ehk meie elukeskkonna, võivad kemikaalid seda tugevalt kahjustada. Ohtlikud ained võivad saastada metsi ja järvi, ohustades sealseid elusorganisme, ning häirida ökosüsteemi. Önnetused, mis on seotud ohtlike aineteega, võivad olla põhjustatud peamiselt nende käitlemisel tehtavatest vigadest (Tint 1999:58).

Oht ilmneb siis, kui ohtlike ainete toimub önnetus. Esmalt pöörame tähelepanu suur önnetuse ohuga ettevõtetele, mis toodavad, ladustavad ja kasutavad kemikaale enda tööstusprotsessis. Elus ei ole miski sajaprotsendiliselt kindlustatud, önnetused võivad juhtuda inimlike vigade ja tehniliste rikete tõttu, kemikaalide ümberlaadimise käigus või ka kuritegevuse tõttu.

Teine suurem oht seisneb Eestis toimuvas ohtlike ainete transpordis. Kemikaale transporditakse maanteel, raudteel, merel, torustiku abil ja õhuteel. Liikluses esinevad avariid, mis on seotud kemikaalide veoga ja millel võivad olla tõsised tagajärjed.
Suurõnnetused on seotud suurte tulekahjude ja plahvatustega, mõrgise gaasipilve levimisega või keskkonna reostumisega. Suurõnnetuste tagajärjeks võib olla suur hulk inimohvreid ja ulatuslikud purustused. Teadaolevalt on ka Eestis juhtunud keemiaõnnetusi, mida autor kajastab statistika osas.

1.1 Ohtlikud ained

Kemikaalid ümbritsevad inimesi igal pool ja tavaliselt ei kahtlusta, et need võivad olla ohtlikud. Kui ainete käitlemine vastab nõudetele, siis kemikaalid inimeste tervist ei kahjusta.

Ohtlik aine võib olla kontrollitud või kontrolli alt väljunud. Kui ohtlik aine on õigesti pakendatud, ladustatud, transporditud, siis võime öelda, et see on kontrollitud. Kui aga ohtlik aine on maha valgunud ja võib tekitada otseseid kahjustusi meie tervisele, keskkonnale ja varale, siis võime öelda, et see on kontrolli alt väljunud (Callan 2001).

Ohtlik aine võib olla oma omadustelt

- tuleohtlik,
- plahvatusohtlik,
- mõrgine,
- sõõbiv,
- reaktiivne (kergesti reageeriv),
- radioaktiivne,
- termiliselt ebapüsiv,
- nakkusohtlik.

(Talvari 2006:25).

Eestis enamlevinud ohtlike ainete ja nende saanerimismeetodite ülevaateks koostas autor tabeli (Lisa 1).

Ohtlikud ained on ÜRO järgi jaotatud üheksasse klassi, nad on grupeeritud omavahel samaste omaduste alusel. Klassid koosnevad alamklassidest, kus ained on liigitatud vastavalt oma ohtlikkusele alagruppidesse (Lisa 2).

Kuna tänapäeva elus esinevad näitajad nagu inimfaktor ja loodusõnnetus, siis nende vahendusel võivad ohtlikud ained omavahel reageerida ning juhtuvad spetsiifilised kemikaaliõnnetused. Tavaliselt juhtuvad need alati ootamatult ja lahendusprotsess on keeruline.

1.2 Suurõnnetuse ohuga ettevõtetega seotud riskid

Maailma uuema tehnoloogia areng on seotud tihedalt keemitööstusega. Iga päev leiutavad uusi ühendid ja valmistis. Ka Eesti ei seisa paigal, pidevalt areneb tööstus, toimub sadamate ehitus, ohtlike ainete transport riigi territooriumil, mis on tihedalt seotud võimalike keemiaõnnetuste riskidega.

Tulekahjud ja plahvatused tööstus- ja laohoonetes võivad olla põhjustatud järgnevast. (Hädaolukordade...2011)

- Inimlikust eksimusest: erinevate ohutusnõuete rikkumine, hoolitus, hoonete või seadmete projekteerimisvead.
- Tehnoloogilistest riketest: projekteerimisvead, defektiiga seadmed, ohutusseadmete tagajärjed nagu veekardinad ja detektorid, mittefunktsioneerimine, seadmete amortisatsioon.
- Loodusjõududest: äike, torm, üleujutus ja ekstreemised temperatuurid.
- Kuritahtlikust tegevusest: vandalism või terrorism.
Kokkuvõttes juhib autor tõhusalt sellele, et tööstusest tuleneb reaalse suurõnnetuse oht, mis võib kaasa tuua suure hulga inimohvreid ja suuri purustusi. Peamised suurõnnetused, mis ohtlikke kemikaale kasutavad või tootvad ettevõtetes juhtuda võivad, on seotud suurte tulekahjude ja plahvatuste, mürgiste gaasipilvede ja ümbritseva keskkonna reostamisega. Tööstuses on oht seotud suurte koguste ohtlike aineteega, mis võimalike eksimustega, hooletuste, tehniliste probleemide või muu põhjuse tõttu võib tekitada suure katastroofi. Tööstusettevõtete kasutatakse mitmesuguseid ohtlikke kemikaale, millest raskemaid õnnetusi põhjustavad tugevatoimelised mürkained, mis vabanemise tagajärjed on lisaks ettevõttes olevatele inimestele ohtlikud kogu ümbruskonna elanikele ja looduskeskkonnale. (Joesten, Netterville, Wood 1993: 10)

Hoidmaks ära selliste õnnetuste teket, teostatakse riikliku järelevalve käigus pidevat kontrolli suurõnnetuse ohuga ettevõtete üle ning neile pandud kohustused on seotud selle vastutusega, mis neil lasub (Klaos 2007:94).

Ühiskonna areng on kaasa toonud selle, et asustus läheb järjest tihedamaks ja suureneb tõenäosus, et tööstusettevõtted elamurajoonid ja tööstusettevõtted elamurajooni juhtuda, et võimalikud ohtlikud kemikaalid võivad suurendada suurema hulgaga õnnetused, peavad ettevõttemu hooltuse tagamiseks seotud seadmestikud esitama järgmised dokumendid (Kemikaaliseadus §11 06.06.1098):

A-kategooria suurõnnetuse ohuga ettevõte - teabeleht, ohutusaruanne ja hädaolukorra lahendamise plaan.

B-kategooria suurõnnetuse ohuga ettevõte - teabeleht, riskianalüüs, ohutuse tagamise süsteemi kirjeldus ja hädaolukorra lahendamise plaan.

Ohtlik ettevõte - teabeleht ja hädaolukorra lahendamise plaan. Eelpool nimetatud dokumendid peavad vastama Vabariigi Valitsuse määruse nr 28 nõuetele.

Tagajärjede leevendamiseks on vaja koostada põhivõimelise süsteemi täiendavate tehniliste lahendite ja reageerijate koolituse kaudu. Päästjate ja keskkonnaekspertide vahelise koostöö tagamine on oluline õnnetusele reageerimisel. Vajalik on säästvate ja koolituste läbiviimine õnnetustele reageerivatele ametkondadele.

Valdavas enamuses ohtlike ja suurõnnetuse ohuga ettevõtetes (ca 70%) tegeletakse kütuste ladustamisega ning käideldakse tuleohtlikke aineid (Päästeamet 2011:3).

1.2.1 Põhja-Eesti Päästekeskuse teeninduspiirkkond

Suurem osa, see on 55% suurõnnetuse ohuga ettevõtetest asub Põhja-Eesti Päästekeskuse teeninduspiirkonnas (joonis 1). Seal paikneb 28 suurõhuga ettevõtet, neist 15 on A-kategooria ettevõtted ja 13 B-kategooria ettevõtted (vt Lisa 3). Peamisteks ohtudeks võime lugeda: AS Propaan, AS Tallinna Vesi, Belor-Eurofert Eesti OÜ.

Nimetatud gaaside tiheused õhu suhtes on suuremad õhust, olles seega maapinna lähedal ja võivad koguneda maapinna lohkudesse ja hoonete keldritesse, kuna need on eriti tuleohtlikud, on see asjaolu tähendab. Kuumus või tuli võivad põhjustada mahutite lõhkimise. Võimalik auru plahvatus ruumides, väljas ning kanalisatsioonis (Meyer 1990:360).

AS Propaan vedelgaasijaam asub Lasnamäe elurajooni läheduses ja on selge, et kui juhtub õnnetus ohutsoonis, mis on 200 m, jäävad sinna Betooni ja Gaasi tänav, see põhjustab autoliikluse seisaku ja kujutab tõsist ohtu suurele inimhulgal. (AS Propaan teabeleht 2006:4)

AS Tallinna Vesi on kemikaaliseaduse alusel määratletud B-kategooria suurõnnetusohuga ettevõtteks. Veepuhastusjaam asub Tallinas ja tegeleb vee puhastamisega, kasutatakse kloori, maksimaalne võimalik kogus laos on 16 tonni. (AS Tallinna Vesi teabeleht 2006:1)

Õnnetusjuhtumite tõttu tekib suur oht inimeste tervisele ja elukvaliteedile, samuti tekib keskkonnareostuse oht. Ohualasse, mis on 2500 m, satuvad ohtliku ja suurõnnetuse ohuga ettevõtted nagu Krimelte OÜ, Maseko AS ja Premia AS, Tallinna Külmhoone jne. Samuti Ülemiste kaubanduskeskus, liiklussõlm, kortermajad ja lennujaam. (AS Tallinna Vesi teabeleht 2006:3)

B-kategooria suurõnnetuse ohuga ettevõte on Belor-Eurofert Eesti OÜ, nende põhiline tegevus on väetise hulgimüük, aiandustarbed, veoste ekspedeerimine. Põhilist ohtu kujutab ammoniumnitraat kui väetis.
Ettevõttes ladustatakse ohtliku kemikaalina ammoooniumnitraati maksimaalse võimaliku kogusena 3000 tonni. Suurim oheks on merepiiri lähedus, mis võib tekitada vee ja keskkonna reostust. Ohuala raadiuseks võib lugeda 500 m, ohtu satuvad Paljassaare kalatoöstus, toiduõli villimise tehas Oilio ja Paljassaare sadamas suunduv Tallinna Sadama raudtee haru (Belor-Eurofert Eesti OÜ 2009:5).

1.2.2 Ida-Eesti Päästekeskuse teeninduspiirkond

Teine regioon, kuhu on keskendunud 31% suurõnnetuse ohuga ettevõtted, on Ida- Eesti Päästekeskuses teeninduspiirkond (vt joonis 1, lisa 6). Seal paiknevad 16 ettevõtted, kus kümme neist on A-kateteria suurõnnetuse ohuga ettevõttet ja kuus on B- kategootia suurõnnetuse ohuga ettevõtet (Lisa 4). Põhised riskitegurid on: Narva Vesi AS, AS BCT, Alexela Sillamäe AS.

AS BCT ohualasse jäävad Sillamäe Sada sadamas ettevõtted, hinnanguliselt 2/3 Sillamäe linnast (ca 1100 inimest) ja Päite küla (27 inimest). Kõige suurem oht on Sillamäe tööstusrajooni ettevõtetel, mis asuvad lähedal (AS BCT teabeleht 2009: 7).

Kolmas A- kategooria suurõnnetuse ohuga ettevõte on Alexela Sillamäe AS, tema põhiline tegevus on toornafta ja vedelate naftasaaduste laadimine ja ladustamine. Nimetatud ettevõte töötab raskete kütteõlidel ja vaakumgaasiõlidel, nende maksimaalne võimalik kogus on mõlemalt puhul 235 125 tonni, samuti ka põlevkiviõlidel, nende võimalik kogus on 15 000 tonni, veel tegetetakse liislikütustega ning nende maksimaalne võimalik kogus on 25 800 tonni. (AS Alexela Sillamäe teabeleht 2006:1)

1.2.3 Lõuna-Eesti Päästekeskuse teeninduspiirkond

Päästekeskuses on kuus suurönnetuse ohuga ettevõtet, ehk 12% (joonis 1, lisa 6). Neist on kaks A-kategooria suurönnetuse ohuga ettevõtet ja neli B-kategooria suurönnetuse ohuga ettevõtet (Lisa 5).

A-kategooria suurönnetuse ohuga ettevõtte AS Tartu Terminali põhitegevusaladeks on naftasaaduste hoiustamine ning jaegrüüle ja hulgimüük. AS Tartu Terminal paikneb Tartus 11 km põhjapoole jäävas Kärkna asulas.

Ohtlikuimaks önnetuseks terminalis võiks olla mahutipõleng ja suurim kahjulikkus oleks suitsukahjustused. Põlemise käigus suits eraldub kuumuse toimel erinevaid olisid, mis toovad tõsist kahju inimestele ja keskkonnale. (Joesten 1993: 11)

1.2.4 Läänne-Eesti Päästekeskuse teeninduspiirkond

Päästekeskuses asuvad 94 ohtlikku ettevõtet ja ainult üks B-kategooriat suurönnetuse ohuga ettevõtte Henkel Makroflex AS (Lisa 5).

Ettevõtte territoorium asub Pärnu linna loodeosas paiknevast tööstuspiirkonnas. Tehase peamisteks toodanguartikliteks on polüuretaanvahud ja silikoonid. Kogu tooraine ja toodangu transport toimub autode abil maanteid mööda. Tänapäeva ohuks on ka väga halvad teolud
ettevõtte lähistel, see loob võimalusi liiklusõnnetusteks. Tehases käideldakse järgmisi ohtlikke aineid: polüeeter polüool, difenüülmetaan-4,4', tris(2-kloroisopropüül)fosfaat, kloorparaffin, isobutaan, propaan. (Henkel Makroflex AS teabeleht 2006:1)

Võimalikud hädaolukordad ja nende tagajärjed võivad olla vedelgaasi välja voolamine mahutipargis, mis võib tekitada tulekahju või plahvatus ohu. Võib juhtuda ka aurustunud gaasipilve süttimine, torustiku lekke korral ei saa vältida gaasi leket ja gaasiplahvatust, mis põhjustab süttimise, tulekahju ja plahvatus ohu. (Исаева 2001: 125)

1.3 Ohtlike ainete transport.

Tähtsamaks rahvusvaheliseks transpordisõlmeks on Tallinn ja selle ümbruskond, kus asuvad Eesti suuremad süvaveelised ning aastaringsele navigatsioonile avatud sadamad, raudtee- ja maanteetransporti reisi- ja kaubaterminaalid, rahvusvaheline lennujaam. Siia suubuvad kõik tähtsamad raudtee- ja maanteemagistraalid ning mere ja õhuteed. (Pavlovitš 2008:11)

Maanteede ja tänavate kui riigile sotsiaal-majanduslikust seisukohast olulisimate pikkus ületab raudtee, veetee ja õhuteede kogupikkuse enam kui 8-kordselt (vt tabel 6).

<table>
<thead>
<tr>
<th>Transpordi liik</th>
<th>Tee pikkus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riigimaanteeede pikkus</td>
<td>16 479 km</td>
</tr>
<tr>
<td>Raudteede ekspluatatsiooniline pikkus</td>
<td>968 km</td>
</tr>
<tr>
<td>Navigeeritavate sisemiste laevateede pikkus</td>
<td>320 km</td>
</tr>
</tbody>
</table>

(allikas: maanteeameti statistika)

Et vähendada selliste ainete veoga seotud riske, on igal veoliigil oma rahvusvahelised regulatsioonid. ADR reguleerib ohtlike veoste liikumist Euroopa maantee- ja meretranspordis, IMDG rahvusvahelises mereveos, RID rahvusvahelises veos raudteel. (Pavlovitš 2008:12)
1.3.1 Ohtlike ainete vedu maanteetranspordis

Eesti siseveos on tähtsaim regulatsioon ohtlike veoste autoveo eeskeri. Kuna suurte kaubakoguste hoiustamine on liiga kulukas, muutuvad transporditavad saadetised, sealhulgas ohtlikud kaubad, väiksemaks, seega kasvab ka ohtlike saadetiste arv (Pavlovitš 2008:13).

Ohtlike aineid on võimalik transporteerida ainult siis, kui nad on märgistatud ehk ohutusmärgistega tähesstatud. Ohu tunnusmärgil on kaks numbrit: ülemine number näitab aine ohtlikkust ADR järgi, alumine number on selle aine või ainegrupi tähis ÜRO registris (Pavlovitš 2008:15).

Numbrid ja neid ümbristev raam on mustad, põhi oranž. Veokil peab ohu tunnusmärke olema kaks, üks veohihiku ees ja teine taga, mõlemad nähtaval kohal, risti veohihiku pikiteljega. Ohtliku veose tunnusmärk on oranži taustaga ja sellel on kaks rida numbreid. Ülemine number on ohutunnusnumber, mille esimene number näitab aine klassi, alumine number on ohtliku aine tunnus (Klaas 2007:88).

Osu tunnusnumber on mõeldud selleks, et hoiatada kaasliiklejaid veose ohtlikkuse eest ning anda esmastele reageerijatele vajalik informatsioon aine kohta, kui õnnetus peaks juhtuma (Talvari 2006:27)

Eriti ohtlike veoste kategorialise kuuluvad plahvatusohtlikud, radioaktiivsed ja eriti märgised ained suures koguses. Maantee transpordis ei tohi neid aineid vedada tormi, tuisu ja kiilasjäega, samuti pole lubatud veo ajal tankida (Pavlovitš 2008:15).

Põhimaanteed suurem liiklussagedus on koondunud suuremate linnade või tööstuspiirkondade ümbrusesse (Kaal 2011:54):

- Tallinn-Pärnu-Ikla keskmine liiklussagedus 15016 autot/ööpäevas.
- Tallinn-Tartu-Võru-Luhamaa keskmine liiklussagedus 13416 autot/ööpäevas.
- Tallinn-Narva keskmine liiklussagedus 11839 autot/ööpäevas.

Ohtlike veoste transport läbi linnade (Tross 2006:14):

100% - Tapa ja Kehra
50% - Narva, Tartu, Kiviõli, Jõgeva, Rakvere, Tamsalu
20% - Tallinn, Keila, Paldiski
10% Elva

1.3.2 Ohtlike ainete vedu raudteel

Suur enamus kaubavedudest liigub Venemaalt Eesti sadamatesse. Nii Tartu kui Narva poolt Tapale saabuv kaubaliiklus on laias laastus samas suurusjärgus. Suurim hulk kaubaronge liigub Tapa, Tallinna ja Muuga vahel (Tsentraliseeritud...2008: 43).

Ohtlikud raudteeveosed tulevad Eestisse (Tross 2006:14):

50% Narva kaudu
40% Petseri kaudu
10% Valga kaudu

Raudteejaamade põhilisest riski allikateks on jaamadesse kujuundun tuleohtlike kokkusurutud või vedeldatud vedelike ja gaasidega ning väetisega täidetud tsisternid ja kaubavagunid. Eriti ohtlikud on propaani, bensiini ja toornaftaga täidetut tsisternid ning ammoniumnitraati-34 vedavad vagunid (Pavlovitš 2008:19).

Raudteeinfrastruktuuril asetleidnud liiklusõnnetuste ja raudteeintsidentide korral operatiivseks rongiliikluse ja manöövritöö taastamiseks ning avarii tagajärgede likvideerimiseks kasutatakse päästerongi. Õnnetustele reageerimise ressursid paiknevad Tallinnas ja Tapal. Järelikult on kõige suuremate riskidega liinilõigud hästi kaetud (Tsentraliseeritud...2008:79).

1.3.3 Ohtlike ainete vedu veetranspoldis

Kõige suuremad kaupade kogused on veetranspordil. Üks tanker võib korraga peale võtta üle 300 000 tonni kütust. Läänemere veeteedel seilab päevas keskmiselt 2000 laeva, sh 200 naftatankerit. Transiitvedude osakaal üle 90% ja see toimub praktiliselt täielikult Põhja-Eesti sadamatesse. Eesti sadamaid külendas 2006. aastal 16693 laeva, millest Tallinna, Muuga ja Paldiski lahe piirkonda külendas 13109 laeva. Eesti merealadel toimub aktiivne liiklus umbes 10 000 km² suurusel alal, kus ka reostuste tekkimise võimalused on suuremad (Riiklik...2008:15).

käigus. Pilsivete vette laskmine on üks peamisi enamjaolt väikesemahulisi merereostusi tekitavatest ohutudest (Riiklik...2008:18).

Statistika andmetel on laevaõnnetused vähenenud, mis annab lootust, et kui arendame sama suunda edasi, siis on merereostusi võimalik vältida. Olulise panuse annab ka keeld ühepõhjaliste tankerite liiklemisele Soome lahes (Riiklik...2008:20).

Önnetusi juhtub küll sageli, kuid üldjuhul on tegemist maantee-transportdiga, kus kogused ei ole väga suured ning suurõnnetuse tekke võimalus on väga väike. Ohtlikumaid maanteeveoseid on veeldatud gaaside vedu. Hiljuti oli suur probleem Poola vedelgaasiveokiga, mis transportis St Peterburist läbi Eesti Poolasse veeldatud maagaasi. Raudeel ja meredel on küll maanteejõlisest juhtuvate önnetuste arv väiksem, kuid liiguvad suuremad kogused ja önnetuse korral võivad seal tagajärjed olla kordi raskemad. Eriti rasked võivad olla tagajärjed, kui önnetus juhtub ülesõidukohtadel asula lähikonnas, sest siis võivad ohustatud olla ka elanikud (Klaas 2007: 96).

2 TÖÖ UURIMUSLIK OSA

2.1 Uuringu metodoloogia

Käesoleva lõputöö eesmärgiks on analüüsida keemiapääste võimekust ning leida selleteenuse optimaalne vajadus Eestis. Selle jaoks on plaanis leida mõõdetavad argumendid, mis kinnitavad tehnika vajadust, arvestades erinevaid keemiapäästeteenuse tasemeid. Samuti tuleb välja uurida nõrgad küljed selle teenuse teostamisel ja teha ettepanekud nende kõrvaldamiseks.

Lõputöö eesmärgini jõudmiseks püstitas autor järgmised uurimisküsimused:

- Millised kemikaaliohed on Eestis ja mis ohte tekitavad ohtlikud ained?
- Millised on Eestis toimunud keemiaõnnetused ja milline on nende statistika regiooniti?
- Kas keemiapäästeteenus Eestis on piisav ja millised võimalused, et selle teenuse arendamisel?

Uurimisküsimustele vastamiseks kasutas autor kvalitatiivse ja kvantitatiivse uurimismeetodi kombineeritud variante. Lõputöö suurem osa sisaldab kvalitatiivsete uurimismeetodeid, mille andmekogumismeetodiks valis autor intervjuud, tekstide ja muude dokumentide kogumise. Kvantitatiivseks uurimismeetodiks oli kasutatud ametlik statistika.

Statistilise andmeanalüüsi selgitatakse välja regioonid, milles on kõige suurem keemiaõnnetuse oht. Intervjuu abiga selgitatakse välja argumendid, mille põhjal saab mõõta ja kinnitada keemiapäästetehnika vajadust ja teenuse arendamisest. Dokumendianalüüsi selgitatakse võimalikud keemiaõnnetuse põhjusted ja tagajärjed.

2.2 Intervjuude tulemuste kokkuvõte

valdkonda (vt Lisa 9). Intervjueeritavaks olid valitud Päästeameti ja Päästekeskuste keemiapääste vallkondade eksperdid ja spetsialistid.

2.2.1 Päästeameti erikeemia talituse juhataja Jaanus Vahersalu

2.2.2 Päästeameti päästetööde koolituse juht Stella Polikarpus

2.2.3 Päästeameti planeerimise- ja analüüsi talituse peaspetsialist Kady Danilas

Päästeameti planeerimise ja analüüsi talituse peaspetsialist Kady Danilas arvab, et argumendid, mille põhjal saab mõöta ja kinnitada keemiapäästetehnika vajadust, on tööstusparkide laiendamine ja uute ehitamine, sadamate ehitamine, ohtlike ainete vedude kasv ning juhtunud keemiaõnnetused Eestis ja maailmas. Temalt sai autor dokumentiansalüüsiks andmeid, mis puudutavad suureõnnetuse ohuga ettevõtteid ja nende seotud riske.
2.2.4 Põhja-Eesti päästekeskuse planeerimisbüroo juhataja Martti Parve

2.2.5 Ida-Eesti päästekeskuse Sillamäe komandopealik Sergei Petrov

2.2.6 Ida-Eesti päästekeskuse koolitusbüroo juhataja Urmas Grüning

Koolitusbüroo juhataja Urmas Grüningu suhtlemiseks oli valitud mõlemale poolele kõige mugavam intervjuu viis. Intervjuu küsimused olid koostatud ja saadetud elektrooniliselt intervjuueeritavale ning kogu suhtlemine toimus elektroonilises keskkonnas. Tema sõnul peamised probleemid IEPK on: inimressurssi puudus ja teenuse tekitamise ajal koosseisu korrigeerimine. Teine puudus on väga nõrk komandode esimene tasand, reageerimine
2.2.7 Lõuna-Eesti päästekeskuse Valga komandopealik Raivo Pavlovitš

2.2.8 Lääne-Eesti päästekeskuse koolitusbüroo juhataja Vaino Kaunissaar

2.3 Keemiaõnnetuste statistika

Millised on Eestis toimunud keemiaõnnetused ja milline on nende statistika regiooniti?

Autor jagas juhtunud önnetused päästekeskuste regioonide järgi, mis omakorda andis võimaluse hinnata riskide tekkimise tõenäosust igas regioonis (vt joonis 4).

Selgub et suurem osa önnetustest toimus PEPK-le alluval territoriumil ehk Harjumaal, seda on võimalik selgitada järgmiselt: Tallinnas ja Harjumaal asub enamus suurõnnetuse oluga ettevõttes, kõige suuremad kaubajaamad ja sadamad. Kuna ohtlikke kemikaale käideldakse
selles regioonis rohkem, selgub, et önnetused nende aineteega võivad juhtuga sagedamini kui mujal.

Põhja-Eesti Päästekeskusele kuuluval territooriumil toimus 2000.- 2010. aastal 315 kemikaalide saastumise önnetust, mis moodustab 54% üldarvust. (Statistika andmed 2010)
Kõige tõsisemad önnetused, mis olid juhtunud PEPK territooriumil, leiab Lisa 7.

Lääne-Eesti päästekeskusele kuuluvas regioonis toimus 2000.- 2010. aastal 96 kemikaalide saastumise önnetust, mis teeb 17% üldarvust (Statistika andmed 2010).

Sündmuste arvu võib autor põhjendada regiooni territooriumi ulatusega, sealhulgas läbib regiooni mitu olulist maanteed (Via Baltica, Tallinn-Tartu, Pärnu-Rakvere), kus võib toimuda liiklusönnnetusi ohtlikke veoseid vedava veokiga (Kaunissaar 2011).

Mõned önnetused, mis on juhtunud LÄEPK teritooriumil (vt Lisa 7).

Ida-Eesti Päästekeskuse vastaval territoriumil toimus 2000.- 2010. aastal 89 kemikaalide saastumise önnetust, mis teeb 15% üldarvust (Statistika andmed 2010).

Kemikaalide saastumise önnetused juhtuvad harva, aga ka tagajärjed ei pruugi olla kerged.

Kõige tõsisemad önnetused, mis olid juhtunud IEPK teritooriumil (vt Lisa 7).

Lõuna-Eesti Päästekeskuse vastaval territoriumil toimus 2000.- 2010. aastal 78 kemikaalide saastumise õnnetust, mis teeb 13% üldarvust (Statistika andmed 2010).

Autor pöörab tähelepanu sellele, et graafiku järgi on LÕEPK üks kindel regioon, kus viimase viie aasta jooksul kasvab ohtlike aineteega önnetuste arv.

Kõige tõsisemad önnetused (vt Lisa 7).

Kaasaegne keemiatööstus on edukalt arenenud, tootmise maht ja ainete transport on suurenenud, seetõttu et kasvavad ka ohud, mis on seotud ohtlike aineteega. Seda kinnitab keemiaõnnetuste statistika. Önneks juhtuvad seda tüüpi väga harva, kuid nende tagajärjed on tõsised ja rasked.

Loomulikult ei saa ainult statistika põhjal järeldusi teha Kui önnetusi ei ole varem juhtunud, siis ei saa järeldada, et neid ei juhtu. Hea näide oli Poola metaaniveok.

Parem ennetustegevus kui önnetuse tagajärjed.

2.4 Eesti keemiapääste võimekuse analüüs

2.4.1 Eesti Päästeteenistusesüsteem

2.4.2 Keemiapäästteenuse kirjeldus

Päästteenistus on pikki aastaid arendanud keemiapääste võimekust ning valmis koheselt reageerima ohlike kemikaalidega seotud õnnetustele.

Keemiapäästteenus on päästetööde teenuse valdkonna osa. Nimetatud teenuse eesmärgiks on päästemeeskondade valmisele teostada ööpäevaringselt päästetöid ohlike aineteja juhtunud sündmustel ning leevendada ohu realiseerumisel tekitatud kahju. (Päästeamet...2010)

Keemiapääste võimekusel on kolm tasandit - esmareageerimisvõimekus, põhivõimekus ja ekspertvõimekus. (Eestis...12.12.2010)

Esmareageerimisvõimekuse puhul on päästjad saanud esmase väljaõpe, mille puhul suudetakse määrata oht ja teha esmaseid päästetöid. See puudutab peamiselt lihtsamaid olmekeemia õnnetusi. Sisenemist ohliku kemikaaliga saastunud ohutsoonini võivad teostada vähemalt neljaliikmelised päästemeeskonnad, mille isikkoosseisul on õigus teostada suitsusukeldumist päästetuse juhi loal, eesmärgiga päästa inimesi ja vara ning teha vajalikke päästetöid. (Päästetööde keemiasukeldumise juhend)

Keemiavõimekusega komandod suudavad pakkuda järgmisi keemiapääste teenuseid (Päästeamet...2010):

- Päästetööd ohtlike ainete keskkonnas
- Ohtlike ainete esmane tuvastamine ja proovide võtmine
- Keemiasukeldujate dekontamineerimine (saasteärastust)
- Ohtlike ainete lokaliseerimine, ümberpumpamine, neutraliseerimine
- Kiirgusohu tuvastamine
- Keemiasukeldujate ja varustuse desinfitseerimine bioloogilise ohu korral

2.4.3 Teenuse osutamiseks vajalikud ressursid

Keemiapääste üks teenusstandardi teostamisel peab keemiavõimekusega komandode olemasolev varustus kaasama suitsusukeldumiseks vajalikku varustust, lisaks sellele peab iga komandos samaaegselt keemiapääste suunitluste põhiautodega olema ka keemiahaagis ja päästjate keemiasukeldujate isikukaitsevarustus.

Isikutest varustus sisaldab kaks rasket ja neli kerget keemiakaitseülikonda, kolm pritsmekaitseülikonda ning ühekordset pritsmekaitseülikonda. Seda reguleerivad Päästeameti peadirektori käskkiri 16.04.2009 nr 56 “Keemiapääste suunitlustega põhiautode ja keemiapääste haagise varustuse miinimum nõuded“ ja „Päästetööde keemiasukeldumise juhend“, mis on kinnitatud Päästeameti peadirektori käskirjaga nr 111. (Päästeamet...2010)

Keemipääste kaks teenusstandardit hõlmavad samu nõudeid nagu keemiapääste üks, lisaks sellele peab olema keemiapäästekontseiner. Eestis asub konteiner Lilleküla komandos ja peab vastama Põhja-Eesti Päästekeskuse direktori 20.04.2010 käskkirjale nr 24 „Lilleküla päästekomando keemiakonteri operatiivsesse valmisolekusse lülitamine ja põhivarustuse nimekirja kinnitamine“. (Päästeamet...2010)

Inimesed keemiapääste 1 teenuse osutamiseks võetakse päästetöö baas esitamise osatööst, mis tähendab, et isikkoosseisus peab olema 25 valveteenistujat. Nendest 20 on keemiasukeldujad, millega tagatakse ööpäevane viieliikmeline valveteenistus (1+4), kus üks on KSJ ja neli keemiasukeldujat. Teenusele kaasavad inimesed päästetöö baasest moodustavad neljaliikmelise meeskonna (1+3). (Päästeamet...2010)

Keemiapääste 2 teenuse osutamisel peab isikkoosseis sisaldama 50 valveteenistujat, kellest 40 on keemiasukeldujad. Nende abil tagatakse ööpäevane 10-liikmeline valveteenistus, kaks KSJ-ti ja kaheksa keemiasukeldujat. Kaasatud on ka viieliikmelist meskonda. (Päästeamet...2010)

2.4.4 Keemiapääste teenusstandardi tööalased täienduskoolitused

Keemiasukeldumist võib teostada päästeteenistuju, kes võib teostada ka suitsusukeldumist. Keemiasukeldumist keemiakaitseriietuskes võib teostada päästeteenistuju, kes on läbinud vähemalt 40-tunnise Päästeamet poodirektori käskkirjaga kinnitatud keemiasukeldumise ala algväljaöppekursuse. (Polikarpus 2011)

Täienduskoolitust keemiasukeldumist sisaldavate praktiliste harjutuste või öppuste näol viiakse läbi päästemeeskonnale vähemalt üks kord aastas, keemiapäästemeeskonnale vähemalt kord kvartalis. (Päästetööde keemiasukeldumise juhend)

2.4.5 Keemiavõimekusega komandod Eestis

Tabel 7. Eesti keemiapiäästekomandode operatiivse valmisoleku koosseis (Allikas: Eesti operatiivse valmisoleku aruanne 2011,08.04.)

<table>
<thead>
<tr>
<th>PÄÄSTEKESKUS</th>
<th>KOMANDO</th>
<th>TEHNIKA</th>
<th>MEESKOND</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEKPEK</td>
<td>Keskinna</td>
<td>Keskinna 11 + KEEMIAHAAGIS</td>
<td>0+1+4</td>
</tr>
<tr>
<td></td>
<td>Keskinna12</td>
<td>0+1+4</td>
<td></td>
</tr>
<tr>
<td>Lilleküla</td>
<td>Lilleküla 11</td>
<td>0+1+4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lilleküla 12 + KEEMIAHAAGIS</td>
<td>0+1+3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lilleküla 72 + KEEMIAKONTEINER</td>
<td>0+0+2</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>IEPK</td>
<td>Sillamäe 11 + KEEMIAHAAGIS</td>
<td>0+1+4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sillamäe 12</td>
<td>0+0+2</td>
<td></td>
</tr>
<tr>
<td>Kohtla-Järve</td>
<td>Kohtla-Järve 11+KEEMIAKONTEINER</td>
<td>0+1+3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kohtla-Järve 21</td>
<td>0+0+1</td>
<td></td>
</tr>
<tr>
<td>LäEPK</td>
<td>Pärnu 11</td>
<td>0+1+3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pärnu 12 + KEEMIAHAAGIS</td>
<td>0+1+3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pärnu 21</td>
<td>0+0+1</td>
<td></td>
</tr>
<tr>
<td>LÕEPK</td>
<td>Tartu 11</td>
<td>0+1+4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tartu 12 + KEEMIAHAAGIS</td>
<td>0+1+3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tartu 21</td>
<td>0+0+1</td>
<td></td>
</tr>
</tbody>
</table>
3 TULEMUSTE ANALÜÜS JA ETTEPANEKUD

3.1 Järeldused

Keemiapäästeteenus on suhteliselt uus teenus, mis on pidevas arengus ja muutumises. Aja kulgedes teenuse kvaliteet kasvab tänä öppustele, harjutustele ja reaalsetele väljakutsetele. Intervjuudest toodud probleeme arvestades on hinnang keemiapäästeteenusele rahuldav.

Positiivses pooles võib nõnda, et keemiasuunitlusega komandod paiknevad optimaalsetes kohtades ja olemasolev varustus keemiapääste keemiasuunitlusega komandodes võimaldab efektiivselt teostada keemiasukeldumist. Väiksemad önnestused on suudetud likvideerida ja selle põhjal võib autor väita, et varustus on piisav.

Samas on väga nõrk komandode esimene tasand, reageerimine igasugustele väikestele olmeavariidele, näiteks kraadiklaas läks katki, kuni selleni, et tegelikult oli tegu tööstusliku kraadiklaasiga. Mis mahutas ca 100 g elavhõbedat. Hetkel on olukord selline, et sisuliselt väga väikeste sündmuste pärast peab keemiavõimekusega komando välja sõitma, kuigi olukord oleks võib-olla lahendatav tavalisteks sekkujate ja keemiasukeldumise järjepidevuse tagamiseks. Puuduvad piisavad teadmised põlevvedelike pumpamiseks vajalikust varustusest. Bensiini ümberpumpamiseks ei ole piisavalt kogemust ja koolitust. Mõned kohad ei sobi, et olukord oleks võib-olla lahendatav.

Puuduvad piisavad teadmised põlevvedelike pumpamiseks vajalikust varustusest. Bensiini ümberpumpamiseks ei ole piisavalt kogemust ja koolitust. Seetõttu ei soovita Päästeamet poolt päästjatel ise käsitlust pumbata. See on valdkond, kus tuleks edasi areneda.

Analüüsides keemiaõnnetusi, võib tähelepanu pöörata koolitussüsteemile, teemaks ohtlike ainete selgeks tegemine ja mõõtseadmete kasutamine. Päästjate tehtud esmased mõõtised keemiaõnnetusel on vajalikud eelkõige päästetööde juhile päästetööde korraldamiseks, kuid ei ole asitiõendeid menetlustoimingutest kohtuvaidluse korral. Teadmine, millise ohtliku ainega on tegu, on päästetööde juhile tähtis, et langetada esmaseid otsuseid keemiakaitse taseme määramiseks ja laialdi valgunud kemikaalide kogumiseks.

Keemiaõnnetusi esineb harva – seetõttu on ka kogemusi nende likvideerimiseks vähe, mistõttu tulebki panna suuremat rühku keemiaalastele täienduskoolitustele ja praktilistele õppustele.

Analüüsi käigus võib järeldada, et kaaluad argumentend, mille põhjal saab mõpta ja kinnitada keemiapäästeteknika vajadust, on järgmised: tööstusparkide laiendamine ja uute ehitamine, sadamate ehitamine, ohtlike ainete vedude kasv ning juhtunud keemiaõnnetused Eestis ja maailmas.

Peamine ülesanne on vajadus hakkama saada ohtlike ainete önnetuste likvideerimisega Eestis.

3.2 Ettepanekud

Päästetööde operatiivsemsaks ja professionaalsemaks läbiviimiseks ning olukorra parandamiseks on autoril ettepanek korraldada kõigile päästekomandode töötajatele keemiasukeldumise–alaseid väljaöppekursusid. Soetada tuleks ka vajaminev varustus, millega oleks võimalik reageerida esimese ja teise astme väljasõitutele.

Veoste suhtes puudub avalik kontroll. Küll oleks aga vajalik nõuda läbi Ohtlike veoste eeskirja inglise keelseid saatedokumente, mis hõlbustaks päästjatel päästetöid korraldada.
Koolitussüsteemi arendamisel on esiteks vaja stimuleerida teadmiste omandamist, korraldada motiveeritud õppused, kuhu on kaasatud ka keskonnaeksperte ja keemiaspetsialiste teistest riikidest ja ka meie ERDT keemiarühma liikmeid.

Samuti on otstarbekas harjutada reaalsete kemikaalidega. Professionaalsus tuleb tavalisel kogemuste kaudu, kuid ainult harjutuste ja õppustega ei ole võimalik saavutada nõutavat taset. Päästjad peavad üle saama põhjendamatust kartusest kemikaalide ees. Õppused ja harjutused on välja toonud pidevalt ühtesid ja samu vigu, mis peamiselt tulevad hooletusest.

Tuleks teha rohkem taktikalist koolitust alates teise juhdistasandist.

Samuti on oluline sisulise arusaamine keemiast. Päästjad oskavad varustust kasutada, teavad, kuidas pesu- ja loputuskohad moodustada ja kaitseriietus selga panna, aga keemia seadused ja reaktsiooni reeglid on nende jaoks uus teadus. Päästekollež võib pakkuda koolitusteenust keemia õpetamisel ja PÄKE tegevuse selgitamisel.

Kiirguse ja bioloogilise ohu kohta on teadmised ebapiisavad. On oluline, et reageerijad oleksid koolitatud ja valmis kiirelt ja oskuslikult tegutsema kõikide ohtude puhul.
KOKKUVÕTE

Käesolev lõputöö "Keemiapäästeteenuse vajadus Eestis" eesmärgiks oli analüüsida keemiapääste võimekust ning leida selle teenuse optimaalne vajadust Eestis.

Selle jaoks on leitud vastavad argumentid, mis kinnitavad tehnika vajadust, analüüsitud kemikaaliohud ja keemiapääste võimekust. Samuti välja uuritad nõrgad küljed selle teenuse teostamisel ja antud ettepanekud nende kõrvaldamiseks.

Töö eesmärgin jõudmiseks uuris autor välja, et peamised kemikaalideohud on: tööstusettevõtted, laod ja edasimüügilist puit, samuti maantee-, raudtee- ja laevaliiklus, samuti ohtlike ainete kasutamine kõikvõimalike ettevõtete ja inimeste poolt.

Uurimuse tulemusena selgus, et üheks peamiseks keemiapäästeteenuse probleemiks on koolituse süsteemi arendamise vajadus. Keemiaõnnetusel on keerulisem lahendusprotsess, need on väga ohtlikud, likvideerimine on töömahukas ja eeldab suurte eritehniliste ressursside kasutamist. Keemiaalased önnetused ei juhtu tihti, päästjatel ei ole praktilist kogemust, neil puudub kogemus selliste sündmuste lahendamiseks, sagedane on asjatu hirm kemikaalide ees. Reageerijal pole piisavalt keemiaalaseid teadmisi ja ei teada tehdavamini, kuidas ohtu likvideerida ennast ohtu seadmata. See näitab, et on vaja arenenda koolitusprogrammi, sest kui päästja ei tegele ja ei paranda enda oskusi, on lõpptulemus ebarahuldav.

Lõputöö ülesanded on täidetud, autor pakub omapoolsed järeldusi ja ettepanekuid keemiapäästeteenuse arendamiseks.
РЕЗЮМЕ

Тема данной дипломной работы «Необходимость аварийно-химической спасательной службы в Эстонии». Работа состоит из 3 глав (всего страниц 40) и содержит 7 таблиц и 9 рисунков. Работа написана на эстонском языке с иноязычным заключением на русском.

Ключевыми словами в данной работе являются: опасные вещества, химические аварии, предприятия повышенной опасности, аварийно-химическая служба.

Спасательная организация на протяжении долгого времени развивала аварийно-химическую службу, которая способна реагировать на химические происшествия. Химические аварии случаются редко, хотя их последствия по сравнению с пожарами, могут быть намного плачевнее.

Проблема связана с несколькими аспектами: в Эстонии находится большое количество промышленных химических предприятий, а также постоянно происходит транзит опасных химикатов. Известно, что в Эстонии случались химические аварии. Международная статистика показывает, что самые серьёзные последствия характерны именно для происшествий, связанных именно с химическими опасными веществами.

Целью данной работы является анализ аварийно-химической службы в Эстонии и исследование её оптимальной необходимости.

Методами исследования являются: анализ документальных и статистических данных, а также интервью.

Работа состоит из трёх частей. В первой части рассказывается о химических опасностях в Эстонии. Во второй части описывается проведенное исследование и в третьей части автор делает выводы и приводит свои предложения по развитию службы.
VIIDATUD ALLIKATE LOETELU

CAS registry numbers. CAS registri Chemical Abstracts Service
http://www.cas.org/expertise/cascontent/registry/regsys.html välja otsitud 02.04.2011

Eestis arendatuse tõhusat keemiapääste võimekust. Päästteenistuse koduleheküljelt
www.rescue.ee/10309 välja otsitud 12.12.2010

Emergency Response Guidebook 2008. Transport Canada

Kemikaaliseadus 06.05.1998 jõustunud 07.06.1998 - RT I 1998, 47, 697... RT I 2009, 12, 74

Klaos, M. 2007. Õnnetusjuhtumid ja turvalisus. Tartu

Laherand M. 2008 Kvalitatiivne uurimisviis. Intervjuud

Ohtlike veoste autoveo eeskiri https://www.riigiteataja.ee/ert/act.jsp?id=13221308
Päästeameti ohlike ainete kataloog, http://www.rescue.ee/3185 välja otsitud 07.03.2011
Päästeameti peadirektori käskkiri nr 111 17.06.2010. Päästetööde keemiasukeldumise juhend
Päästeameti Peadirektori käskkijaga nr 56 16.04.2009.a. Keemiapääste suunitlusega põhiautode ja keemiapääste haagise varustuse miinimum nõuded
Päästekomandode gruppide kinnitamine ning päästekomandode ja korrapidamisgruppide paiknemine. Käesolev käskkiri jõustub alates 01.09.2010. a. 11.08.2010 nr 145
Riiklik hädaolukordade riskianalüüside kokkuvõte. 2008. Tallinn
Riiklik merereostustöörje plaan 2008. Tallinn
Suurõnnetuse ohuga ja ohtlik ettevõtted. Päästeamet 31.12.2010
Talvari A. 2004 Ohtlikud ained. Sisekaitseakadeemia. Ohtlikud ained
Timberg, K. 19.01.2011 Päästeamet aastal 2010
Исаева, Л.К. 2001. Экология пожаров, техногенных и природных катастроф. Москва
Харисов, Г.Х. 1999. Аварийно-спасательные работы. Курс лекций. Москва
TABELITE JA JOONISTE LOETELU

Tabel 1. Enamlevinumad ohlikud kemikaalid Eestis ja nende saneerimis meetodid
Tabel 2. Põhja-Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted
Tabel 3. Ida-Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted
Tabel 4. Lõuna- Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted
Tabel 5. Lääne-Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted
Tabel 6. Transpordi liikide teepikkused. Allikas: maanteeameti statistika
Tabel 7. Eesti keemiapäästekomandode operatiivse valmisoleku koosseis

Joonis 1. Suurõnnetuse ohuga ettevõtted Eestis
Joonis 2. Liiklusõnnetuse statistika maakonna järgi 2010 a
Joonis 3. Kemikaalide saastumine Eestis 2000-2010 a
Joonis 4. Kemikaalide saastumine regioonide järgi
Joonis 5. PEPK kuuluval territooriumil toimunud keemiaõnnetused 2000-2010 a
Joonis 6. LäEPK kuuluval territooriumil toimunud keemiaõnnetused 2000-2010 a
Joonis 7. İEPK kuuluval territooriumil toimunud keemiaõnnetused 2000-2010 a
Joonis 8. LõEPK kuuluval territooriumil toimunud keemiaõnnetused 2000-2010 a
Joonis 9. Keemiapäästemeeskonnade paigutamine
LISA 1. ENAMLEVINUMAD OHTLIKUD KEMIKAALID EESTIS

Tabel 1. Enamlevinumad ohtlikud kemikaalid Eestis ja nende saneerimis meetodid.

<table>
<thead>
<tr>
<th>AINE NIMETUS</th>
<th>ÜRO</th>
<th>ORGAANILISED AINED</th>
<th>ANORGAANILISED AINED</th>
<th>SANEERIMIS MEETOD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GAAS</td>
<td>VEDELIK</td>
<td>TAHKE</td>
</tr>
<tr>
<td>1. Põlevkiviõli</td>
<td>1288</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Atsetüüleen</td>
<td>1001</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Asfalt, bituumen</td>
<td>1999</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Formaldehüüd</td>
<td>2209</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Metanool</td>
<td>1230</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Naatriumhüdroksiid</td>
<td>1823</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Destillaadid (nafta)</td>
<td>1268</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Süssinködiiksiid</td>
<td>1013</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Amмоонiumnitraat</td>
<td>2068</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Hapnik</td>
<td>1072</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Raud(III)sulfaat</td>
<td>1067</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lämmastik</td>
<td>2032</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Lämmastikhape</td>
<td>2051</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Difenüülmetaan-disisootsüanat</td>
<td>2186</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Formaldehydi oligomeerised reaktsiooniproductid fenooliga</td>
<td>2789</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Vesinikfluoriidhape</td>
<td>3378</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Tris(2-kloor-1 metüületüülfosfaat</td>
<td>3378</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Vesinikloridhape</td>
<td>3378</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Etaanhape</td>
<td>2051</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Naatriumkarbonaat</td>
<td>3378</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21. Alumiiniumsulfaat</td>
<td>3378</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22. Hapnik</td>
<td>1072</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23. Ditseeriumtrikarbonaat</td>
<td>1006</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24. Kloroalkaanid, C14-C17</td>
<td>1199</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. Kaltsiumkarbonaat</td>
<td>2186</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26. Argoon</td>
<td>1006</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27. Ditanatriumkarbonaat</td>
<td>1727</td>
<td>+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SANEERIMIS MEETOD

- Absorbent, liiv, turvas
- Absorbent, liiv, turvas.
- Absorbent, liiv, turvas
- Absorbent, turvas
- Veeudu, vahtkustuti, absorbent, liiv
- Jahutada anumat vee piserdamisega.
- Vesi, liiv, lubi
- Vesi, liiv, lubi
- Vesi, liiv, lubi
- Absorbent, liiv
- Liiv
- Liiv
- Liiv
- Liiv
- Liiv
- Vees lahastuv, liiv
<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.</td>
<td>Diammooniumkarbonaat</td>
<td>+ Liiv</td>
</tr>
<tr>
<td>30.</td>
<td>Dimetüüleeter</td>
<td>+ vaht, CO₂, absorbent, liiv</td>
</tr>
<tr>
<td>31.</td>
<td>Fenool</td>
<td>1671 + vaht, vesi, CO₂, absorbent, liiv</td>
</tr>
<tr>
<td>32.</td>
<td>Titaandioksiid</td>
<td>3174 + Liiv</td>
</tr>
<tr>
<td>33.</td>
<td>Etanool</td>
<td>1170 + vaht, vesi, CO₂, Absorbent, liiv</td>
</tr>
<tr>
<td>34.</td>
<td>Tseeriumdioksiid</td>
<td>2682 + vees lahustumatu, liiv</td>
</tr>
<tr>
<td>35.</td>
<td>Nioobium</td>
<td>+ Metall</td>
</tr>
<tr>
<td>36.</td>
<td>Etaandiool</td>
<td>+ absorbent, liiv</td>
</tr>
<tr>
<td>37.</td>
<td>Kalsiumkarbiid</td>
<td>1402 + MITTE VETT. Liiv</td>
</tr>
<tr>
<td>38.</td>
<td>Lantaankloriid</td>
<td>+ Liiv</td>
</tr>
<tr>
<td>39.</td>
<td>Kaaliumkarbonaat</td>
<td>+ Liiv</td>
</tr>
<tr>
<td>40.</td>
<td>Pentaerütritool</td>
<td>3344 + absorbent, liiv</td>
</tr>
<tr>
<td>41.</td>
<td>Propaan-2-ool</td>
<td>3092 + vaht, vesi, CO₂, absorbent, liiv</td>
</tr>
<tr>
<td>42.</td>
<td>Vesikperoksiid</td>
<td>2015 + vesi, absorbent, liiv</td>
</tr>
<tr>
<td>43.</td>
<td>Ammooniumvesunikdifluoriid</td>
<td>2817 + Liiv</td>
</tr>
<tr>
<td>44.</td>
<td>Lantaandihüdroksiid</td>
<td>+ Liiv</td>
</tr>
<tr>
<td>45.</td>
<td>Naatriumkloriid</td>
<td>+ Liiv</td>
</tr>
<tr>
<td>46.</td>
<td>Ammooniumkloriid</td>
<td>1630 + pesta jälgid rohke veega, liiv</td>
</tr>
<tr>
<td>47.</td>
<td>Oksaalhape</td>
<td>+ vaht, vesi, CO₂, liiv</td>
</tr>
<tr>
<td>48.</td>
<td>Väävelhape</td>
<td>1830 + MITTE VETT. Pulber, AFFF, vaht, CO₂, absorbent, liiv, lubi</td>
</tr>
<tr>
<td>49.</td>
<td>Polüpropüleenglükool</td>
<td>1075 + veeudu, vahtu, absorbent, liiv</td>
</tr>
<tr>
<td>50.</td>
<td>Ftaalhappe anhüdriid</td>
<td>2214 + vesi, vaht, CO₂, absorbent, liiv</td>
</tr>
</tbody>
</table>
LISA 2. OHTLIKEAINETEKLASSID

Klass 1. Lõhkeained.
Keemilisedained, mis soojuse, surve, lõögi, hõõrdumise, valguse, elektrisädeme, leegi või keemilise reaktsiooni toimel tekitavad plahvatus millega kaasneb suur kogus plahvatusgaase.

Klass 2. Põlevad gaasid.
Ained, mis normaaltingimustel on gaasilises olekus. Jagunevad põlevateks-, põlemist toetavateks- ja toksilisteks (mürgisteks) gaasideks.

Põlevvedelikud on ja nende segud, mis 61°C ja madalamatel temperatuuridel eraldavad süttivaid aure.

Klass 4. Põlevtahkedained.
Igasugused tahkedained, mis väga kergesti süttivad. Siia alla kuuluvad isesüttivad ained ning ained, mis veega reageerides tekitavad põlemisohtlikke gaase ning suurendavad sellega süttimisohutu.
Klass 5. Oksüdandid ja peroksiidid, OXY

Ained, mis sisaldavad hapnikku ja soodustavad tule- ja plahvatusohtu ning sageli võivad olla ka söövitavad.

Mürgised ained on ained, mis organismi sattudes põhjustavad tervisekahjustusi või surma. Lisaks kuuluvad siia klassi ained, mis võivad põhjustada inimeste ja loomade nakatumist.

Klass 7. Radioaktiivsed ained.

Radioaktiivsed ained on ained mis lähetavad endast ioniseerivat kiirgust ja on seetõttu organismile väga kahjulikud.

Klass 8. Sööbivad ained.

Söövitavad ja korrodeerivad on ained, mis kahjustavad elavaid kudesid ning reageerivad erinevate metallidega ning mitmete teiste aineteega.

Muud ohtlikud ained ja esemed, mis oma omadustelt ei kuulu ühegi teise klassi alla.
Tabel 2. Põhja-Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>ETTEVÕTE</th>
<th>Kat.</th>
<th>Asula</th>
<th>TEGEVUSVALDKOND</th>
<th>OHTLIK AINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alexela Terminal AS</td>
<td>A</td>
<td>Paldiski</td>
<td>Heledate naftasaadustead, naftakeemia ja veelandatud gaasi hoiustamine ja transiidi korraldamine</td>
<td>Tuleohtlikud vedelikud ja eriti tuleohtlikud veelandatud gaasid</td>
</tr>
<tr>
<td>2</td>
<td>DBT AS</td>
<td>A</td>
<td>Muuga</td>
<td>Väetiste käitlemine</td>
<td>Ammooniumnitraat -väetis</td>
</tr>
<tr>
<td>3</td>
<td>Dekoil OÜ</td>
<td>A</td>
<td>Tallinn</td>
<td>Naftasaaduste ümberlaadimine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>4</td>
<td>E.O.S. Vopak (Pakterminal AS)</td>
<td>A</td>
<td>Viimsi</td>
<td>Nafta ja veelandatud naftasaadustead ja ladustamine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>5</td>
<td>E.O.S. Vopak (Trendgate AS)</td>
<td>A</td>
<td>Maardu</td>
<td>Naftasaaduste käitlemine, ladustamine, hoiustamine ja transiit</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>6</td>
<td>E.O.S. Vopak (Termoil AS)</td>
<td>A</td>
<td>Maardu</td>
<td>Naftasaaduste ladustamine, hoiustamine ja transiit</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>7</td>
<td>Hromium OÜ</td>
<td>A</td>
<td>Maardu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Jupiter Plus AS</td>
<td>A</td>
<td>Maardu</td>
<td>Pürotehnilise kauba rahvusvaheline transport, ekspedeerimine ja ladustamine</td>
<td>Plahvatusohtlikud ained</td>
</tr>
<tr>
<td>9</td>
<td>Lõhketööd OÜ</td>
<td>A</td>
<td>Võerdda</td>
<td>Puur- ja lõhketööde teostamine</td>
<td>Plahvatusohtlikud ained</td>
</tr>
<tr>
<td>10</td>
<td>Milstrand AS</td>
<td>A</td>
<td>Viimsi</td>
<td>Naftasaaduste ladustamine ja ladustamine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>11</td>
<td>Oiltanking Tallinn AS</td>
<td>A</td>
<td>Viimsi</td>
<td>Naftakeemiaprotüktide ladustamine ja ladustamine</td>
<td>Tuleohtlikud vedelikud ja keskkonnaohutlikud kemikaalid</td>
</tr>
<tr>
<td>12</td>
<td>Propaan AS</td>
<td>A</td>
<td>Tallinn</td>
<td>Veelandatud gaaside käitlemine</td>
<td>Eriti tuleohtlikud veelandatud gaasid</td>
</tr>
<tr>
<td>13</td>
<td>Ruf Eesti AS</td>
<td>A</td>
<td>Kurna</td>
<td>Pürotehniliste toodete jaes- ja hulgimüük. Ilutulestike korraldamine</td>
<td>Plahvatusohtlikud ained</td>
</tr>
<tr>
<td>14</td>
<td>Stivterminal AS</td>
<td>A</td>
<td>Maardu</td>
<td>Veelatel naftasaadustead käitlemine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>15</td>
<td>Vesta Terminal Tallinn AS</td>
<td>A</td>
<td>Maardu</td>
<td>Naftaoodete transiit</td>
<td>Tuleohtlikud</td>
</tr>
<tr>
<td>OÜ</td>
<td>Riik</td>
<td>Kaubanduskesk.</td>
<td>Toimintatööaeg</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>Kroodi Terminal AS</td>
<td>B</td>
<td>Maardu</td>
<td>Naftasaaduste ladustamine</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
<tr>
<td>Bitest TÜ</td>
<td>B</td>
<td>Maardu</td>
<td>Heledate ja tumedate naftasaaduste ladustamine</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
<tr>
<td>Maardu Terminal AS</td>
<td>B</td>
<td>Maardu</td>
<td>Naftasaaduste hoiustamine ja ladustamine</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
<tr>
<td>Eesti AGA AS</td>
<td>B</td>
<td>Maardu</td>
<td>Tööstus- ja meditsiinigaaside ladustamine ja müük</td>
<td>Eriti tuleohtlikud gaasid</td>
<td></td>
</tr>
<tr>
<td>NCC ja PO AS</td>
<td>B</td>
<td>Maardu</td>
<td>Naftasaaduste hoiustamine ja ladustamine</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
<tr>
<td>Neste Terminal AS</td>
<td>B</td>
<td>Viimsi</td>
<td>Heledate naftasaaduste käitlemine</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
<tr>
<td>BLRT Transiit OÜ</td>
<td>B</td>
<td>Tallinn</td>
<td>Vabaduse naftaemäetide ümberpumpamine ja hoiustamine</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
<tr>
<td>Petкам AS</td>
<td>B</td>
<td>Maardu</td>
<td>Vabaduse naftaemäetide ümberpumpamine ja hoiustamine</td>
<td>Tuleohtlikud vedelikud</td>
<td></td>
</tr>
</tbody>
</table>
| Belor-Eurofert Eesti OÜ | B | Tallinn | Väetiste käitlemine | Ammoniumnitraat-
väetis |
| Recticel OÜ | B | Tallinn | Polüuretaanvahude ja akrüülhermeetikute tootmine | Tolueendiisotsüanaat |
| Krimelte OÜ | B | Tallinn | Polüurettoanvahude ja akrüülhermeetikute tootmine | Eriti tuleohtlikud gaasid |
| Scantrans AS | B | Tallinn | Kütuste ladustamine | Tuleohtlikud vedelikud |
| Tallinna Vesi AS | B | Tallinn | Joogivee puhastamine | Kloor |

(allikas: päästeamet. Kostas: autor)
Tabel 3. Ida-Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted.

(Allikas: Päästeamet. Kostas: Autor)

<table>
<thead>
<tr>
<th>Nr.</th>
<th>ETTEVÕTE</th>
<th>Kat.</th>
<th>Asula</th>
<th>TEGEVUSVALDKOND</th>
<th>OHTLIK AINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kiviõli Keemiatööstuse OÜ</td>
<td>A</td>
<td>Kiviõli</td>
<td>Põlevkiviõliide tootmine</td>
<td>Mürgised kemikaalid</td>
</tr>
<tr>
<td>2</td>
<td>Alexela Sillamäe AS</td>
<td>A</td>
<td>Sillamäe</td>
<td>Heledate naftasaaduste, naftakeemia ja veeljatud gaasi hoiustamine ja transiidit korraldamine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>3</td>
<td>BCT AS</td>
<td>A</td>
<td>Sillamäe</td>
<td>Veedele keemiatoodete ümberlaadimine</td>
<td>Mürgised kemikaalid (ammoniaak)</td>
</tr>
<tr>
<td>4</td>
<td>Nitrofert AS</td>
<td>A</td>
<td>Kohtla-Järve</td>
<td>Maagaasi ümbertöötlemine, ammoniaagi ja karbamiidi tootmine</td>
<td>Mürgised kemikaalid (ammoniaak)</td>
</tr>
<tr>
<td>5</td>
<td>VKG AS (formaliinitootmine)</td>
<td>A</td>
<td>Kiviõli</td>
<td>Formaliinitootmine</td>
<td>Formaliin</td>
</tr>
<tr>
<td>6</td>
<td>VKG Oil AS</td>
<td>A</td>
<td>Kohtla-Järve</td>
<td>Põlevkiveemiasaaduste tootmine</td>
<td>Mürgised, väga tuleohtlikud, keskkonnahohtlikud kemikaalid</td>
</tr>
<tr>
<td>7</td>
<td>Novotrade Invest AS</td>
<td>A</td>
<td>Kohtla-Järve</td>
<td>Naftaproduktide ümbertöötlemine, tootmine ja realisatsioon</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>8</td>
<td>Orica Eesti OÜ</td>
<td>A</td>
<td>Sirgala</td>
<td>Lõhkeainete tootmine ja müük</td>
<td>Plahvatusohtlikud ained</td>
</tr>
<tr>
<td>9</td>
<td>Silmet AS</td>
<td>A</td>
<td>Sillamäe</td>
<td>Haruldaste metallide töötlemine</td>
<td>Väga mürgised kemikaalid</td>
</tr>
<tr>
<td>10</td>
<td>Tankchem AS</td>
<td>A</td>
<td>Sillamäe</td>
<td>Veedelate ja gaasiliste kemikaalide ladustamine</td>
<td>Metanool</td>
</tr>
<tr>
<td>11</td>
<td>Narva Vesi AS</td>
<td>B</td>
<td>Narva</td>
<td>Joogivee puhastamine</td>
<td>Kloor</td>
</tr>
<tr>
<td>12</td>
<td>Soldina Õlibaas OÜ</td>
<td>B</td>
<td>Soldina</td>
<td>Veedelate naftasaaduste käitlemine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>13</td>
<td>Eesti Energia Õlitööstus AS</td>
<td>B</td>
<td>Auvere</td>
<td>Põlevkiviõli ja gaasi tootmine, ladustamine ja turustamine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>14</td>
<td>Baltic Tank AS</td>
<td>B</td>
<td>Kunda</td>
<td>Naftasaaduste ja põlevkiviõli ladustamine ja käitlemine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
<tr>
<td>15</td>
<td>Kunda Nordic Tsement AS lõhkematerjali ladu</td>
<td>B</td>
<td>Andja</td>
<td>Lubjakivi ja savi kaevandamine, killustiku tootmine</td>
<td>Plahvatusohtlikud ained</td>
</tr>
<tr>
<td>16</td>
<td>Oiltank OÜ</td>
<td>B</td>
<td>Rakvere</td>
<td>Naftasaaduste hoiustamine</td>
<td>Tuleohtlikud vedelikud</td>
</tr>
</tbody>
</table>
Tabel 4. Lõuna-Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>ETTEVÕTE</th>
<th>Kat.</th>
<th>Asula</th>
<th>TEGEVUSVALDKOND</th>
<th>OHTLIK AINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agrochema Eesti OÜ</td>
<td>B</td>
<td>Jõgeva</td>
<td>Vääetiste käitlemine</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(ammoniummutraat väetis)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Reola Gaas AS</td>
<td>A</td>
<td>Vana-Kuuste</td>
<td>Veel datad süisesinkgaaside ladustamine ja müük</td>
<td>F+, veel datad gaas</td>
</tr>
<tr>
<td>3</td>
<td>Tartu Terminaal AS</td>
<td>A</td>
<td>Kärkna</td>
<td>Kütuste ja määrdeõlide hoiustamine ja müük</td>
<td>F, vedelik</td>
</tr>
<tr>
<td>4</td>
<td>Hansa Ilutulestikud OÜ</td>
<td>B</td>
<td>Saarepeedi</td>
<td>Pürotehnliste toodete hoiustamine</td>
<td>E</td>
</tr>
<tr>
<td>5</td>
<td>Ilutulestiku Keskus Arnika OÜ</td>
<td>B</td>
<td>Vana-Vöidu</td>
<td>Pürotehnliste toodete hoiustamine</td>
<td>E</td>
</tr>
<tr>
<td>6</td>
<td>Viljandi Naftabaas OÜ</td>
<td>B</td>
<td>Viljandi</td>
<td>Diislikütuse ladustamine, hoiustamine ja ümbertöötlemine</td>
<td>F, vedelik</td>
</tr>
</tbody>
</table>

(allikas: päästeamet. Kostas: autor)

Tabel 5. Lääne-Eesti Päästekeskuse teeninduspiirkonna suureõnnetuse ohuga ettevõtted.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>ETTEVÕTE</th>
<th>Kat.</th>
<th>Asula</th>
<th>TEGEVUSVALDKOND</th>
<th>OHTLIK AINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Henkel Makroflex AS</td>
<td>B</td>
<td>Pärnu</td>
<td>Polüuretaanvahu ja hermeetikute tootmine</td>
<td>F+, gaas</td>
</tr>
</tbody>
</table>

(allikas: päästeamet. Kostas: autor)
LISA 6. ÖNNETUSTE STATISTIKA

LISA 7. EESTI TERRITOORIUMIL JUHTUNUD KEEMIAÕNNETUSED

PEPK territooriumil juhtunud keemiaõnnetused.
26. 03. 2006 – DBT AS, väetise lao konveieri põleng
01.07.2008 – Kalev SPA, klooriaurud sattusid sundventilatsiooni
28.10.2008 – Krimelte OÜ, plahvatus vahutoomise osakonnas ja sellele jägnev tulekahju, 3 vigastatut (ettevõtte tööoerand ja üks päästetöötaja)
23.04.2009 – Krimetle OÜ, ehitusvahud purkide põleng
27.07.2009 - Paljassaare OÜ Kesto territooriumil, happe laialivalgumine.
09.08.2010 – Tallinna Vesi AS, tulekahju laboris

LääEPK territooriumil juhtunud keemiaõnnetused.
17.12.2008 - AS Ingle, tsisternvagunist välja voolas kuus tonni 58% lämmastikhapet.
07.12.2008- Pärnu, Mai Selveris keemilises puhastuses valgus pesuvalgendit.
05.05.2010- Paides, OÜ Alpilux tootmishoones on purunenud lämmastikhape kanister.

IEPK territooriumil juhtunud keemiaõnnetused.
25.11.2006 – VKG Oil, elektroodokksi seadme tulekahju
30.07.2007 – AS Nitrofert, gradiiirikompleks põleng
11.06.2008 – Silmet AS, tulekahju haruldaste muldmetallide tehases
14.03.2009 – VKG AS, mahuti plahvatus ja sellele jägnev tulekahju
03.08.2010 – Eesti Energia Õlitööstus AS, mahuti purunemine, 3 kannatanud
15.01.2010 – Kiviõli Keemiatööstuse AS, põleng fuuside dekandris
15.12.2010 – Silmet AS, seadme põleng kompressoriruumis

LõEPK territooriumil juhtunud keemiaõnnetused.
23.08.2007 – Tartu Terminaal AS, kütusemahuti tulekahju
31.03.2010 - Jõhvi-Tartu-Valga maantee l76. kilomeetril, gaasitsisterniga veok (19 tonni maagaas) kaldus teelt välja ja vajus kraavi.

Allikas: (Päästeamet 2011:10)
LISA 8. KEEMIAÕNNETUSED, MIS OLID JUHTUNUD VÄLISMAAL

Allikas: (Päästeamet 2011:10)
LISA 9. INTERVJUU KÜSIMUSED

- Milline on optimaalne keemiapäästetehnika vajadus Eestis ja mis linnades peaks see paiknema? Mille alusel paikneksid komandod?
- Milline varustus Teie regioonis on ja missugust on veel vaja ja kuhu?
- Kuidas Te hindate meeskonnad, meeskondade valmidust ja tehnika kasutamist?
- Kõige probolemised kohad keemiapääste süsteemis/teenuses.
- Kuidas Te hindate teadmiste taset? Millised probleemid ja nõrkused?
- Kuidas on võimalik stimuleerida teadmiste omandamist?
- Teie arvamus, milline on Eestis/ Teie regioonis kõige ohtlikum võimalik situatsioon või korduv probleem, mis on seotud ohtlike aineteega.
- Millised on argumendid, mille põhjal saab mõõta ja kinnitada keemiapäästetehnika vajadust Eestis?
- Teie arvamus, kas keemiapäästeteenus Eestis on piisav ja millised on teie ettepanekud, et selle teenuse arendamisel.